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CHAPTER 1 

"I do not know. - Joseph L. Lagrange (1736-1813). 

1. 1. Introduction 

The present dissertation is concerned with some new applica 

A s  such, a description of the basic tions of the theory of moments. 

problem of this theory is a relevant part  of the introduction. 

Problem Statement: 

Let E be a normed, l inear space. 

independent elements of E are given. 

{c.} i =  1,. . . , n, 

condition for  the existence of a linear functional f on E s u c h  that 

A set {x.} i = 1, . . . , n of linearly 
1 

Then given a set  of sca la rs  
2 

c .  > 0, and L >  0 find the necessary and sufficient 
1 1 

f(x.) = c i =  1 , .  . . ,n ,  
1 i 

and 
I I f l I  s L  

The above problem has a very long history of investigation. 

essary  and sufficient condition for the existence of minimum normed 

linear functionals w a s  first obtained by Banach [8]. 

Krein [ 71 studied the above problem in great detail and derived, among 

other results,  the conditions for  the existence of a unique solution. 

In [7] it is also indicated that some of the basic ideas originated with 

A .  A. Markov.' The book by Vorobyev [20] contains some applications 

of the theory of moments to operator equations. 

general nature were presented by Ky Fan [ 91 at a later date. 

The nec- 

Akheizer and 

Results of a more 

Application of the theory of moments to optimal control of 

l inear systems w a s  carr ied out originally by Krasovskii [ 131. 

on Kulikowski [ 181 applied the theory of moments to optimal control of 

Later  

'The basic resul ts  are  summarized in the appendix. 

1 
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systems with amplitude, fuel, power and energy censtraints. How- 

ever,  this method was introduced to the western world a s  late a s  1962 

by Kranc and Sarachik [ 191. 

published an ar t ic le  [ 101 on the theory of linear control systems based 

on the resul ts  of Ky Fan and others. 

ar t ic le  [ 31 in which he made a rigorous and detailed application of the 

theory of moments to linear control systems. 

At about the same time, Antosiewicez 

It w a s  followed by Neustedt's 

Familiarity with the theory of moments convinces one that i t  

has important applications in the theory of linear control systems. 

The questions of controllability and optimization of norm of control 

functions fo r  linear systems can be most conveniently formulated in 

the context of the theory of moments. Also ,  i t  is not difficult to see  

(see appendix) that the basic maximization problem related to the 

theory of moments is a problem of nonlinear programming. Hence, 

it is possible to t rea t  a linear variational problem by the methods of 

nonlinear programming (see [ 31). 

[ 151 have applied the theory of moments to the problem of controiia- 

bility of linear, distributed parameter systems. The present d i sser -  

tation is an effort in the direction of finding some new applications of 

the theory of moments. 

Recently Swiger [ 141 and Harget 

1. 2. Scope of the Dissertation 

The problem of optimal pursuit, a s  developed by Kelendzeridze, 

The assumptions made by is presented in detail in the next chapter. 

Kelendzeridze a r e  analyzed and the concept of interceptibility is in- 

troduced. 

then developed. 

s ta tes  of the pursuer f rom which interception is possible. 

cepts of optimal pursuit time and optimal strategies of pursuit a r e  

defined and methods of determining them a r e  also presented. 

Necessary and sufficient conditions of interceptibility a r e  

Next, an estimate is provided for the se t  of initial 

The con- 
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To the author's knowledge, the entire text of this dissertation 

concerning the applications is original and new. 

like to s t r e s s  the fact that no new and tldeep" mathematical theorems 

a r e  developed here. 

sertation. 

either. 

The author \~oiilc! 

This is contrary to the stated purpose of the d i s -  

No 'lnoveltl proofs of well-known theorems are presented 

It is the author's belief that pure mathematics abounds in 

deep" theorems whose potentials have not been fully explored for  ap- t l  

plication. 

application. 

c i se  to mathematically oriented readers.  

only the following quotation to offer. 

Hence, the present dissertation is strictly oriented towards 

Pa r t s  of the dissertation may not appear to be very pre-  

To them the author has 

The mathematicians who a r e  merely mathematicians reason 1 1  

correctly,  but only when everything has been explained to them in 

t e rms  of definitions and principles. 

insufferable, for they only reason correctly when they a r e  dealing 

with very clear principles. - Blaise Pascal (1623-1662) .  To an 

engineer , clear definitions and principles a r e  sometimes luxuries. 

Otheryise they are limited and 



CHAPTER 2 

2.  1 The Pursuit  Problem of Kelendzeridze 

The present section contains a description of the pursuit prob- 

lem proposed originally by Kelendzeridze [ 11. 

the pursuer and the pursued respectively. 

X and Y a r e  given as follows: 

Let X and Y denote 

The equations of motion of 

0 % =  Ax + Bu , dt x(0) = x 

n where a t  t ime t ,  x(t), y(t) E R 

denote the control variables of X and Y respectively. 

of the real valued vector function g(y, v) is assumed to be continuous 

in (y, v) and continuously differentiable with respect to each component 

of the n-vector y .  Control functions u and v are called admissible i f  

they are  sectionally continuous vector functions of t such that 

u( t )  E Slrc Rr and v(t) E fisc R . 
a closed, convex polyhedron. For  given admissible control functions, 

the solutions of Equations (2. 1) and (2 .  2)  satisfying the given initial 

conditions will be called paths of X and Y and denoted by x(t) and y(t), 

t > 0 respectively. 

denote the s ta tes  and u( t )  E Rr, v(t)ERS 

Each component 

S The subset Str of Rr is assumed to be 

F o r  an arbi t rary admissible control function v i t  is assumed 

that there exists an admissible u such that the paths x(t) and y(t), 

t >  0 satisfy the condition x(t ) = y(t ) for some t > 0. 

sumed that for  the chosen u and v, x(t) f y(t) for 0 5 t < t 
s u i t  t ime denoted by T = t l  . 

It is also as- 1 1 1 
The pur- 

l '  
is defined to be T 

u v  uv 

It is assumed that for a n  admissible v, T attains a minimum uv 
for  some admissible u . Let T = Min T . It is further assumed 

that an admissible v exists which maximizes T . This maximum, 

when it exists, is denoted by T = Max Min T 

V u uv 

V 

The pair  of control v u uv' 

4 
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frunctions (u,v) is defined to be optimal i f  and only if T 

corresponding paths of X and Y a re  called optimal paths. 

= T. The 
U V  

2 . 2  Necessarv Condition of ODtimal P u r s u i t  

The following necessary condition of optimal pursuit is due to 

Kelend zerid z e. 

Theorem 1: Let (u, v) be an  optimal pair  of control functions, x(t) 

and y(t)  t > 0 corresponding optimal paths and T optimal pursuit 

t ime. Then there exist continuous, nonzero, covariant vector func - 
tions of t ime p and q (p(t), q(t)ER , 0 5  t 5 T) such that n 

The proof of the above theorem can be found in [ 11. 

2. 3 .  Critiaue of the Analvsis of Kelendzeridze 

The analysis of the pursuit problem presented in [ 11, though 

the first of its kind, lacks completeness. 

lem also calls for considerable generalization. 

The formulation of the prob- 

It is to be noted that one of the basic assumptions in [ 11 is that 

fo r  an arbi t rary admissible v there exists admissible u such that 

x(t ) = y(t ) for  some t l>  0. 

is presented in [ 11 under which such an assumption may be valid. 

will be shown later that even for simple examples such an assumption 

No necessary and/or  sufficient condition 
1 1 

It 



may be incorrect. 

ceptibility. 

relation between the concept of controllability and the basic assump- 

tion of Kelend z eridz e. 

This assumption leads to the concept of inter-  

The astute reader  will notice the possibility of a close 

Another limitation of [ 11 is the assumption that the admissible 

control functions a r e  sectionally continuous. 

admissibility of control functions wi l l  be relaxed to allow every mea- 

surable function to be admissible. 

applied without modification to cases where the control functions a r e  

restricted by isoperimetric constraints over [0, t 1. 
cause the Max Min operation in Theorem 1 is applied for each fixed t. 

This requirement on the 

Note that Theorem l cannot be 

This is so be- 
l 

u v  

2 .  4. Some Recent Results 

Since the publication of Kelendzeridze's art icel ,  a considerable 

The basic amount of work has been done on this pursuit problem. 

assumption of Kelendzeridze (noted previously) has led Pontryagin [ 51 

to introduce the concept of completion of linear differential games. 

Let the equation of motion of a point z(t)E Rn be given a s  

follows 

( 2 . 3 )  
d z  0 

dt - = c z +  U(u)  - V(v) , z(0) = z , 

where u and v a r e  control functions taking values in a (y-1) dimen- 

sional unit sphere K, C is a constant matrix, and U and V a r e  analytic 

mappings of the sphere K to a space L .  Let M be a (n-y) dimen- 
n sional subspace of R . 

By definition, the linear differential game can be completed on 

i f ,  for any initial value z E A  there exists a number 
n 0 

some se t  ACR 

T(z )> 0 such that for an arbitrary piecewise continuous admissible 

control v ,  it is possible to choose an admissible control u such that 

z( t )EM f o r  some t ,  0 5 t 5 T ( z  ). 

0 

0 
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In [ 51, Pontryagin provides sufficient conditions for  completion 

of l inear differential games and also for A = Rn. 

conditions a r e  developed for control functions which a r e  analytic map- 

pings of piecewise continuous functions. Moreover, no simple and 

explicit estimate of the se t  A is provided when A # R n .  

result  is evidently pertinent to the pursuit problem. 

not be applied without modification to the most general form of linear 

pursuit problem, let alone the problem discussed in Section 2.  1. 

In this case, these 

Pontryagin's 

However, i t  can- 

Incidentally, note that the basic problem of a linear differen- 

t ial  game (and not a linear pursuit problem) is not that of "completion" 

but that of the existence of "playable pairs' '  (see [ 111, [ 121). 

Pontrygin's results do not constitute a general  theory of linear dif- 

ferential games as claimed i n  [ 51. Moreover, since nothing is men- 

tioned in [5] about the existence of "value" of the c lass  of linear dif-  

ferential games considered, the title of the paper is somewhat mis- 

leading. 

Hence, 

Necessary and sufficient condition for the completion of the 

pursuit problem discussed in Section 2. 1. is given in the next chapter. 

An estimate of the set  A is provided. Methods for determining T 

and optimal (u, v) pairs a r e  also discussed. 



CHAPTER 3 

3 .  1. Formulation of Problem 

Let the pursuer be denoted by X and the pursued by Y a s  be- 

fore. Their equations of motion a r e  assumed to be a s  follows: 

0 - -  dx - A(t)x + B(t)u, x(to) = x f 0 dt 

y(to) = 0 

(3.  1) 

( 3 . 2 )  

n 
where at t ime t ,  x(t), y(t) E R a r e  the state variables, and u(t) E Rr 

and v(t) E Rm a r e  the control variables of X and Y respectively. X 

is assumed to be a proper system a s  defined by La Salle [2]. 

A(t)  and B(t) a r e  (nxn)  and ( n x r )  matrices respectively. 

The matrices a r e  defined almost everywhere with respect to a 

Lebesgue measure on [ t  ,001. 

A( t )  a r e  members  of L [ t  

Lq[to, t] , 15 q I 00. u is a Lebesgue measurable vector mapping of 

a compact interval [ to , t  ] to R and i ts  components a r e  members  of 

P 1 1  L [t  , t ] where - + - = 1. (Method of choosing t wi l l  be described 

later on in this section. ) Thus Equation (3 .  1) is defined almost 

everywhere on [ t  

lutely continuous mapping of [ t  , t l ]  to R . 

For every bounded [ t  , t ]  elements of 

t] and elements of B(t) a r e  members  of 
0 0 
1 
0 

r 
1 

0 1  P q  1 

t ] and has a unique solution x which is an abso- 
0’ 1 

n 
0 

The function f(t ,y,v) is defined on [ t  031 x RnxV where V 
0’ 

f(t, y, v) is continuous in (y, v) and inte- m 
is a compact set  in R . 
grable in t fo r  fixed (y, v). 

Lipschitz condition and is such that Equation (3. 2) does not have any 

solutions with finite escape time. 

able and for  each t, v(t) E V  . 

Furthermore f(t, y, v) satisfies the 

The control function v is measur-  

Also the set  {f(t,y, v) : v EV}  is assumed 

8 
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to be convex. 

admissible v and the attainable set  of Y in R is closed and bounded 

(see 141). 

Thus Equation (3. 2) has a unique solution y for  every 
n 

For given admissible u and v the solutions of Equations (3. 1) 

and (3. 2)  with the given initial conditions are called the paths of X 

and Y respectively and are  denoted by x and y . 
sible controls u is denoted by U and defined as follows: 

The set of admis- 

U k  {u: ( I u l l p C  K1,K1> 0 )  (3.3) 

where 

and 

Definition 1 : The pursued Y is defined to be interceptible by the 

pursuer  X at time t 

given x there  exists a t  least one admissible u such that 

x( t l )  = y(tl)  

be intercepted by X for  some finite t in the sense of Definition 1. 

The importance of the concept of interceptibility of Y by X should 

if and only if for  a rb i t ra ry  admissible v and 
1 

0 

t l> to. Y is defined to be interceptible by X if it can 

1 

now be  clear in relation to the discussion of the previous chapter. It 

is par t  of the basic assumption of Kelendzeridze. Pontryagin's con- 

cept of completion of l inear differential games is related to  the con- 

cept of interceptibility as shown below. 

Suppose the equation of motion of Y is as  follows: 

-- dY - A(t)y + D(t)V , Y ( t  ) = 0 
dt 0 
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Let z(t) 4 x(t) - y(t). Then it follows that, 

0 0  dz 
dt 0 
- -  - A(t)z + B(t)u - D(t)v , z(t ) =  z = x 

0 0 n 
Then for  given x , Y is interceptible by X implies z E A  where A C R  

is the set on which the linear differential game described above can 

be completed (defined in § 2 .  4. ) Thus for  pursuit problems, the con- 

cept of interceptibility is more general than that of completion. N e c -  

e s sa ry  and sufficient conditions of interception are  given in the next 

two sections. 

3. 2.  Conditions of Interception 

0 It is assumed in this section that x is given. Let t l ,  

t < t l  < 00 be an  arbitrari ly chosen instant of time. 

v, Y is interceptible by X at t 

one U E U ,  such that 

Then for a given 
0 

if  and only if  there exists at least 1 

0 BZ(tl ,X 0 , v )  

where @(t,7) denotes the transition matrix of Equation (3. 1) (u=O), 

y (t ) denotes the solution of Equation (3. 2) a t  t l  for given admissible v 1  
v, and z( t  , x , v)  is a n-vector, often abbreviated as z. (Note: It is 

necessary to embed the space of control functions u into a suitable 

Banach space of functions of strong bounded p-variation. 

see [3]). 

0 

1 

For details 

A . th Define hi(tl, 7 )  = 1 row of the matrix @(tl, 7)B ( 7 ) ,  i=l ,  . . . n. 

Since X is assumed to be a proper system, the row vectors h (t 7 )  

are  linearly independent functions on each interval of positive length. 

Define 

i i’ 

q t l , z ] &  Max < 5 ,  z >  



n where < , > denotes the scalar  product in R and 

Then in view of the theory of moments [3 ] ,  [7] the following result  can 

be easily established. 

0 R e s u l t  1: Fo r  given admissible v and x , necessary and sufficient 

condition for Y to be interceptible by X at t is, 1 

Define 

where R[t 

[ t  , t 1.  0 1  
[4 ] .  

pretation. 

required by X to intercept Y a t  time t l  for the given admissible v. 

Hence, x [ t  x ] equals the maximum energy required by X to inter-  

cept Y at  t when X is moving along minimum-energy paths. Next 

result  now follows easily f rom Result 1. 

t ] denotes the attainable set  of Y in the t ime interval 

This se t  is a closed and bounded subset of R as shown in 

For  p = q =  2 ,  the function x [ t l ,  x ] can be given a physical inter-  

n 0’ 1 

0 

For this special case, X[tl, z] equals the minimum energy 

0 

1’ 

1 

Result 2: Necessary and sufficient condition for Y to be interceptible 

by X at  t l  in the sense ofDefinition 1 is, 

The above inequality can be given the following interpretation i n  t e r m s  

of the attainable se t s  of X and Y respectively. Since x is assumed 

to be given, cD(t , t )x is a fixed vector for given t Let 1 0  1‘ 

S[to, t l ]  =b: A[tl, z] 5 K1, z = - @ ( t  

0 

0 

A 0 
t ) x  + y) . Then by definition 1’ 0 



. .  
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0 

0) t l l  
S[to, t l ]  is the attainable set  of X from x 

when 1 1 ~ 1 1  5 K1. 

in the t ime interval [t 

P 
0 

Result 3: x [ t  ,x 1 5 K1 if  and only if R[to, t ] C S[t , t 1. 1 1 -  0 1  

Proof: Let 5 [ t  , xo] 5 K1 . This implies q t  Z] 5 K1 , vyv E R [to, t l ]  1 1' 
Hence by definition R[t oJ - S[to>t l l .  

Let R[t , t 1 c S[t , t 1. Again by definition x t  

y y  eR[t , t  1 where z = - +(t , t  ) x  + y. 0 1  1 0  

z]  5 K1 , 0 1 -  0 1  1' 
0 0 Hence X[t,,x ] 5 K1 . 

Example: The following example shows that even in simple cases,  

when X and Y a r e  identical dynamical systems and have identical 

constraints on control functions, interception in the sense of Definition 

1 is not possible for  finite t 

and Y be a s  follows: 

Let the equations of motion of both X 1 '  

with both control functions 'limited in magnitude as shown below 

Max lU(t)Is 1 
t €[to, tll 

1 0 The initial state is x = [l,  01 a t  time t = 0. For  the special case 

when v(t) = - 1, y l ( t )  = - t1/2 , y,(t) = - t 

- [ l + t  / 2  , t 1. Evidently @(t l ,  7)B(7) = [ t l  - r, 11 and hence 

0 
2 0 and z(t , x  , v )  = 1 1 

I r 2 
1 1 

F r o m  the definition i t  can be  easily shown that 
0 
L 

x[t , z] = 1 *2 1 t - 
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0 2 
and evidently X[t , x  12 1 + 2 / t l >  1, Vtl < 00. Hence, according to 1 
R e s u l t  2, Y cannot be intercepted by X for any finite t in the sense 

of Definition 1. 

attainable se t s  of X and Y .  

the superposition of these attainable sets that R[t , t l ] 6  S[t , t l ] .  

Thus the motion of Y corresponding to v(t) = - 1 cannot be inter-  

cepted by any admissible motion of X f rom [ 1,0]  fo r  any finite t 

1 
This result  can be easily checked by computing the 

For  this example, i t  becomes c lear  f rom 

0 0 

I 

1 ’  

Condition of Escape: By definition, Y can always escape from X a t  

t i f  for  arbi t rary admissible v, the path of Y cannot be intercepted 

by any admissible path of X in the sense that y(t  ) = x(tl) .  
1 

1 

The function X [ t l J  z ]  , introduced ear l ier ,  can be used to de- 

termine a necessary and sufficient condition of escape. Define 

Result 4: Necessary and sufficient 

a t  t is, 1 

W I  

condition for  Y to escape from X 

0 The following result  describes the monotonic character  of - X[t, x ] 

with respect to t when X is a proper system. 

Result 5 : Given X to be a proper system (see [ 2]) ,  

0 Proof: Let z(t) = - @(t, t ) x  + y  where y is a constant vector. 

is a proper system it follows that (see [ 141 , p. 60) 

If X 
0 

Therefore 
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The implication is that if X is a proper system, Y cannot escape 

from X for large values of t 

Result 6: X[tlJ x0] > K~ if and only if R[t , t 1 ns[to, t l]  = 4 
1 ’  

0 1  - 

0 Proof: Suppose x [ t  x ] > K1. Then u t , ,  z] > K VyeR[toJt l ] .  

Let y E R[toJ t l ] .  Then by definition of the set  S[t , t 1, yfS[t  

Since y is arbi t rar i ly  chosen R[t , t ] nS[t 

- 1’ 1’ 

t l ] .  0 1  0 

t ] = 4 0 1  0 1  

Suppose R[toJ t l ]  nS[to, tl] = 4. Then for every yrR[t t ] , 0 1  
0 

A[tlJ z] > K1.  

3 .  3 

Hence, - h[t lJ  x ] > K1. 

Effect of Initial State on Interception 

In the previous section x w a s  assume( 

_ _  

0 to be given. T ius  a 
0 the results depended either explicitly o r  implicitly on x . In the 

0 present section, effect of x on interception is discussed, Let 

Q[t , t ] denote the set  of initial states of X f rom which it can inter-  

1 cept Y a t  tl. 

is possible if and only i f  inequality (3 .  4) is satisfied. 

0 1  
Recall that f o r  given admissible v, interception a t  t 

Define 

Then an upper bound on X[tl, z]  can be provided a s  follows: 

X[tlJ z] M(tl) 121 J 
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where ( z I  denotes the Euclidean norm of the n-vector z . Also 
0 1.1 = I - @(tlJ to)x  + Y , ( t l ) l  

Hence, inequality (3 .  4) is satisfied whenever 

Then for  any arb i t ra ry  admissible v, inequality (3 .  5) is satisfied 

(3 .  5) 

Hence, f rom the definition 

and the following result is obtained. 

1 R e s u l t  7: Sufficicient conditions for  Y to be interceptible by X at t 

in the sense of Definition 1 are, 

(i) Q[toJ 4 
0 -  

(ii) x E Q[toJ t l l  . 

Condition (i) above can be put into a more interesting form i f  Y is 

assumed to be a linear system as  given below. 

(3 .7)  



Let g:(tlJ 7 )  - ith row of the matrix \E (tl, 7 )  D(T) where Q (tl, 7)denotes 

the transition matrix of Equation (3 .  6)  (v = 0). Then 

II%igillq 
N ( t l )  = K2 Max 

r7 Ir7 I 
and using the definition of M(t ), Condition (i) can be rewritten as 1 

Il=h.II K2 I Iz vigil 1 %  
(iii) Min 1 1 q 2 - N I a x  

E 14 K1 v 1rl I 
For the special case p = q = 2, Condition (iii) can be given yet another 

the Kalman controllability matrix [ 161 for the system X. 

special case of p = q = 2, Condition (iii) becomes 

Thus in the 

Evidently, Condition (iv) implies 
0 

It has been shown in [ 171, that inequality (v) (for K2=K1) is a sufficient 

condition for  the existence of optimal strategies for  a special class of 

pursuit problems. However, as is clear f rom the derivation, inequal- 

ity (v) is not a sufficient condition for  interception of Y by X at t l  

in the sense of Definition 1. 

because the definition of interception used here  is more stringent 

than that used in [ 171. 

depend on x whereas in the present case Condition (ii) along with (i) 

has to be satisfied for  interception. 

the pursuit problem formulated in [ 171 is trivial. 

Condition (iv) is more  stringent than (v) 

Note also that in [ 171, interception does not 
0 

The problem of completion for  

Conditions (ii) and 



(iv) together satisfy the intuitive notions, that for interception, the 

initial state of the intercepter should be favorable and the intercepter 

should be more controllable than the target in some sense. 

3 .  4 ODtimal Pursuit Problem 

This section is devoted to the problem of optimal pursuit. It 
0 

is assumed tha.t (a) Y is interceptible by X, and (b) 

+ 
0 

The last  assumption implies that Y cannot be intercepted by X a t  t . 
Let the pursuit time be denoted by T where T = t  and t is such 

that x( t1)=y(t l ) '  x ( t )#  y(t), to t o s  t < t l .  It is assumed that for an 

a rb i t ra ry  admissible v, T attains a minimum for some admissible 

u. Let T = Min TUv. 

exists which maximizes T . This maximum, when it exists, is de- 

noted by T = Max Min T The pair (u, v) is defined to be optimal if 

and only if T 

uv uv 1 1 

uv 
It is further assumed that an admissible v 

v u  
V 

. 
v u uv 

= T. uv 

1 From assumptions (a) and (b) it follows that there  exists a t 

such that 

0 and (ii) h [ t , x  ] > K I J  Vt, t 5 t < t i  
0 

R e s u l t  8: T = t l ,  where t 

Proof: F rom Condition (ii) and Result 2 i t  is clear  that Y cannot be 

intercepted by X for any t < t l .  

and Result 2 it is clear  that Y can be intercepted by X at t 

sense of Definition 1. 

admissible u such that T = Min TUv 5 t l .  

satisfies Conditions (i) and (ii). 1 

Thus T 4 t l .  A l s o  f rom Condition (i) 

in the 1 
Thus for arbitrary admissible v there exists 

It follows that 
V 

1 '  T = Max Min T 5 t Hence T = t v u v l '  
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- 0  R e s u l t  3: Suppose X[T , x ] = K1. Let v be an  admissible control 

- 0  
such that 

AJT-,z(T-,v,xo)] =X[T  , x  ] 

Then v is an  optimal control for  Y .  

Proof :  Consider a variation of v denoted by v + b v  which does not 

satisfy the hypothesis. Then from definition of x [ T  , x ] it follows 

that 

- 0  

- 0  A[T-, z(T-,  v+bv,  xO)] < x [ T  , x 1 = K1 

0 0 
Since - A [t, x 3 5 X[t, z(t, v +  bv, x )] and by assumption Lim - A[t, x 0 ] > y  

~~~ 

there  exists t < T such that t-t,t I 

Note that t * T because otherwise the last inequality with t -=  T -  

implies that v +  dv satisfies the hypothesis, which is contrary to the 

previous assumption. Thus according to Result 1 the path of Y cor -  

responding to v + bv can be intercepted by an  admissible path of X 

at t <  T. Hence v is an  optimal control for  Y . 

R e s u l t  10: For linear systems, optimal v satisfies the condition 

A 0 
Proof: Define S[t , t  ] = ( z : z  = - @(t  t )x +y,  ycR[to, t l ]}  0 1  1' 0 

0 - 
Then A[tl,x ] = Max A[tl,z] 

z ES[t0, $1 

The set S[t , t ] is closed and convex and A [ t  

of z fo r  fixed t 

z] is a convex function 0 1  1' 
(see [7] or appendix). Thus either Nt, ,  z] attains its 1 



1 9  

maximum on the boundary aS[t , t ] o r  it is a constant on S[t o I  til. 0 1  
Thus the optimal y E aR[t , t ] and hence, f o r  the optimal control 

0 1  

3 .  5 Examples 

Let the equations of motion of X and Y be a s  follows: 

- -  dx - A(t)x+B(t )u ,  x(t ) = xof 0 ,  
dt 0 

- _  dy - C(t) y +D(t) v, y(to) = 0 , 
dt 

with the sets  of admissible control functions defined by Equations ( 3 .  3)  

and (3 .  7) respectively. This example 

cannot be solved by the method of [ 11 because of the nature of con- 

straints on the control functions. By definition 

It is assumed that p = q = 2. 

X[t,, z] = Max < t , z  > , 
5 

where E'W (t t l )  f = 1 x 0' 

This maximization problem can be easily solved by means of 

the Lagrange multiplier technique with the following result .  

X[tl,Zl = [ Z'W : ( t0 , t l )Z ]+  ' 

where z = -  o( t l ,  to )xO+ yv(tl) - 
2 

Since X[t z] L 0 ,  the functions X[t z] and X [ t  , z] has the same 1' 1' 1 
points of extremum. The attainable set  of Y is given a s ,  

# 
R[to,t11 = y: y'W (t , t , ) y  5 I y o  

2 
Since by assumption X is a proper system, X [ t  , z] is a con- 

Also R[t , t l]  is a closed, bounded and convex 
1 

vex function of y (t ). v 1  0 
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2 set. Hence A [ t  z] has a minimum in R[t  , tl]. The maximum of 

X [ t l ,  21 is attained on the boundary aR[t  , t ] because otherwise i t  

will be constant on R [t , t 1. 

1' 0 

0 1  
2 

# 0 
Let q( t l )  = Wx (to, t l )  dt1, to) x . Then 0 1  

(3.  8) I+ - 0' I # 2 # 
X[t1,x0I = [. @ w x @ x o + p  qfwx T ) - 2 p r ) ' q  J 

KO 
L 

where d t , )  = - - 

and some of the arguments a r e  suppressed for convenience. 

function x [t , x ] as given by Equation (3 .  8) is a continuous function 

of t l  and T can be obtained from Result 8 as, 

The 
0 

1 

0 - 
X[T,x ] = K1 

Optimal value of y (t ) is then given a s  v 1  

yv(t) = p (T) q(T) 

The optimal control for  Y becomes 

# 
Y 

v(t) = p (T) D'(t) Y'(T, t )  W (T, to) q(T), 

and that for X becomes 
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APPENDIX 

The L-problem of Krein in an abstract, linear, normed space: 

Let E denote a normed, linear space. Given n linearly in- 

dependent elements x l , .  . . , x 

ditions on the numbers cl, . . . , c 

of E find necessary and sufficient con- 

L(Zc;> 0 , L > 0) , such that 
n 

n' 
there  exists a linear functional f defined on E which satisfies the 

relations 

€(xi) = ciJ i = 1 , .  . . , n, 

and 

Define 

where 

b 

Then necessary and sufficient condition for the existence of a solu- 

tion to the above problem is 

Properties of X(c): 
n 

- - - - 
n) 3 )  X(Cl+ c l , .  . . , c + c )S A b l . .  . J c ) +  X(C1,. . . J n n  n 

4) There exist M > 0 and m > 0 such that 

2 2 
m Z c .  5 X(clJ . .  . ,cn) 5 M Z c i  

1 

5) A b l J . .  . ,cn) 4 X(cl,.. . , c  1 for  m > n 

6) Define S 4 {c : X(c) I 1). Then S is a convex, bounded, 

m 

closed set having interior points. 
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